
Generating Adversarial Packets for Website Fingerprinting
Defense

Mohammad Saidur Rahman
Center for Cybersecurity

Rochester Institute of Technology
saidur.rahman@mail.rit.edu

Abstract

Website Fingerprinting (WF) is a traffic analysis attack
that enables an eavesdropper to infer the victim’s web ac-
tivity even when encrypted and even when using the Tor
anonymity system. Using deep learning classifiers, the at-
tack can reach up to 98% accuracy. Existing WF defenses
are either too expensive in terms of bandwidth and latency
overheads (e.g. 2-3 times as large or slow) or ineffective
against the latest attacks. In this work, we explore a novel
defense based on the idea of adversarial examples that have
been shown to undermine machine learning classifiers in
other domains. In our preliminary experiment, we use a
simple model for generating adversarial packets using dis-
tance minimization technique that drops the accuracy of the
state-of-the-art WF attack from 98% to 60%, while incur-
ring a reasonable 47% bandwidth overhead, showing its
promise as a possible defense for Tor. In this work, we
have developed a novel WF defense using Generative Ad-
versarial Network (GAN) that generates Adversarial Pack-
ets. Adversarial packets are padded to a Tor traffic stream
in a manner that reliably fools the classifier into classifying
it as coming from a different site or from a noise distribu-
tion. In our experiment, we are able to reduce the attack ac-
curacy from 98% to 83% with significant lower bandwidth
overhead which is 9%. We plan to investigate further to re-
duce the attack accuracy so that the defense can be realistic
and deployable.

1. Introduction
Tor is one of the most popular anonymity system with

more than two millions user each day. However, Tor is
known to be vulnerable to traffic analysis attacks. The ad-
versary who observes the both entry and exit sides of the
traffic in Tor is able to correlate the traffic and link the client
to her destination. This type of traffic analysis attacks needs
powerful adversaries. A branch of traffic analysis attacks is

Figure 1: Website Fingerprinting Attack Model.

Website Fingerprinting (WF) attacks. The goal of the adver-
sary in WF attacks is to identify which websites the client
is visiting.

The WF attacker is considered to be a local and passive
attacker (see Figure 1). The local means that the attacker
is located in the client’s network, and knows her IP, for ex-
ample, she can be the client’s wireless router or cable/DSL
modem, the client’s ISP, the guard node itself, and an AS
between the client and guard node. The passive attacker
means that the attacker only eavesdrops the traffic and does
not manipulate the traffic, for example, by reshaping the
traffic or tagging the traffic. Being passive makes the WF
attacker almost impossible to detect. Because the WF at-
tacker is assumed to be local and she only needs to observer
the entry side of the traffic, the WF attacker is considered to
be a weak adversary.

The WF attack is a supervised classification problem.
The websites are the labels and the traffic traces are the in-
stances or observations. In this work, we assume that the
client is browsing the web through Tor network. The at-
tacker uses the same privacy enhancing technology as the
client, here Tor, to collect a set of instances for the websites
which she is interested in identifying. From the collected
instances, the attacker extracts a set of pre-defined features
and trains a classifier on the extracted features. Then the at-
tacker observes the client’s traffic, extracts the features from
the traffic, and classifies the traffic with the trained classi-
fier.

1

The WF attacks are serious threats against Tor because
the attacker only needs to observe the ingress traffic in Tor.
The WF attacks have been improved over time from both
feature extraction perspective and the classifier’s power [7,
9, 15, 17, 21, 22]. The accuracy rate of the state-of-the-art
WF attack now reaches 98% [19].

The state-off-the-art WF defense, WTF-PAD [10], in-
jects the dummy packets to fill the gaps in the traffic and cre-
ate fake bursts. Because WTF-PAD does not delay the real
packets, it does not add latency overhead, and only comes
at a fair bandwidth overhead cost (around 65%). WTF-PAD
successfully could drop the accuracy rate of kNN [21] from
90% to 17%. A recent study [19] using a Convolutional
Neural Network (CNN) could break WTF-PAD and achieve
accuracy rate 90% on the traffic traces protected by WTF-
PAD.

In this project, we are going to investigate a novel WF
defense strategy using adversarial packets generated by a
deep neural network. We plan to generate the adversarial
packets using the techniques in the computer vision field
such as GAN, and CycleGAN. We consider two different
scenarios to evaluate the effectiveness of the adversarial ex-
amples as WF defense, one that the attacker is not aware
of the defense and has been trained on the non-defended
traces, and in the second scenario we consider the case that
the attacker has trained the classifier on the defended traces.
In our initial experiment, our new defense could drop the ac-
curacy rate of state-of-the-art attack from 98% to 60% with
47% bandwidth overhead. Hence, we plan to investigate
more to improve this defense mechanism using GAN. The
purpose is to develop a realistic WF defense with acceptable
bandwidth and latency overhead.

1.1. Contribution of this Paper

• Developed a novel defense using Generative Adversar-
ial Network to Generating Adversarial Packets

• Evaluated Bandwidth overhead and achieved signifi-
cant lower bandwidth overhead which is 9%

• Evaluated performance of Adversarial Packets against
state-of-the-art WF attack lowering the attack accuracy
from 98% to 83%.

2. Background & Related Work
2.1. Background

2.1.1 Tor

Tor is a low-latency anonymity network. A tor circuit con-
sists of three nodes (i.e. guard/entry node, middle node,
and exit node) (see Figure 2). Each node is aware of the ad-
dresses of the previous and the next node. For example, en-
try node only knows the identity of the client and the guard

Figure 2: Tor Network.

node. Exit node only knows about the destination of the
client. It uses multi-layered encryption in each node. The
payloads of Tor network are encrypted using TLS. In the
Figure 2, the orange line means the payloads are encrypted,
and the black line means the payloads are not encrypted.
An eavesdropper, who can control entry or guard node, can
deanonymize a client of Tor.

2.1.2 Website Fingerprinting (WF) Attack

Figure 3: Feeding Traffic Pattern into Trained Machine
Learning Classifier.

We can achieve privacy by separating our activity from
our identity. In web browsing, our identity is our IP ad-
dress and our activities are the visited websites. Tor net-
work ensures user privacy by keeping their identity anony-
mous.Website fingerprinting is a type of attack that enables
a local, passive eavesdropper to know the destination of a
client analyzing traffic. In website fingerprinting research,
We assume that a WF attacker can monitor the traffic be-
tween a client and guard node, and/or she controls the guard
node.

She can collect statistical data about the traffic such
as the total number of incoming packets, the total num-
ber of outgoing packets, the timing of each packet, and
bursts. Packet burst is the sequence of incoming and out-
going packets. She can apply different machine learning
techniques (i.e. k-nearest neighbors, support vector ma-
chines, and random decision forests) to classify websites us-

2

ing those traffic features and use trained machine learning
classifiers to identify the clients destination websites (see
Figure 3).

Website fingerprinting attacker collects traffic of several
websites of her interest. These websites are called moni-
tored websites. After that, she feeds these traffic data based
on traffic features such as incoming and outgoing packets,
bursts, and timestamps to machine learning model to learn
from this input. This process is called training. In the next
step, she feeds her collected Tor traffic to the machine learn-
ing model to predict the new output. This process is called
testing

2.2. Literature Review

Tor is the most popular anonymity network to protect the
user’s privacy over the Internet. However, an attacker can
deanonymize the activity of a Tor client by website finger-
printing (WF) attack. In 1998, WF attack was first consid-
ered as a threat against user’s privacy [6]. With the growth
of the Tor users over the years, WF attack has become a
relevant problem for Tor. To combat this attack, Tor has im-
plemented a WF defense [16]. In this section, we are going
to discuss WF attacks and defenses in more details.

2.2.1 Attacks

In 2009, Herrmann et al. [9] published a WF attack using
IP packet size for their classifier. Panchenko et al. designed
a new attack adding more features: packet volume, packet
direction, and timing [15]. They used support vector ma-
chines (SVM) for classification. In 2012, SVM was again
used by Cai et al. who proposed a new attack based on a
new representation of the classification instances [5]. Their
SVM was based on the Damerau-Levenshtein edit distance
and SVM kernel trick to pre-compute distance between the
traces. This same attack was improved by Wang and Gold-
berg [22]. In 2014, Wang et al. proposed a new attack based
on a k-Nearest Neighbor classifier (KNN) on a large feature
set with weight adjustment [21].

Hayes et al. use yet a novel feature extraction and se-
lection method: they use random forests to extract robust
fingerprints of web pages [8]. In 2016, Panchenko et al.
proposed a new attack improving features based on packet
size, packet ordering, and packet direction [14]. They used
the concept of Wang et al. to develop their KNN classifier
based attack.

Abe and Goto is the first to explore deep learning (DL) in
traffic analysis [2]. They used a Stacked Denoising Autoen-
coder (SDAE) model as their deep learning model, with a
simple input data representation based on incoming and out-
going packet traces. They achieved 88% accuracy in their
attack. Rimmer et al. [17] investigated three deep learning
models: Stacked Denoising Autoencoder (SDAE), Convolu-

tional Neural Network (CNN), and Long-Short Term Mem-
ory (LSTM) in WF attack. Their mainly focused on auto-
mated feature enginnering in WF attack. They also col-
lected large datasets suitable for deep learning models, with
900 websites and 2500 traces for each site. They achieved
96% accuracy in a closed-world setting.

Sirinam et al. [19] extensively investigated the use of
deep learning in website fingerprinting. Their attack could
outperform all the previous attack accuracy reaching over
98% attack accuracy. They evaluated their deep learning
model by 100 classes containing 1000 traces each. They
developed a powerful convolutional neural network (CNN)
model for their attack. Their attack achieved up to 90%
accuracy against WTF-PAD, one of the state-of-the-art de-
fenses. They showed the effectiveness of their attack even
though the defense is in place. Their attack also achieved
49% accuracy against Walkie-Talkie defense.

2.2.2 Defenses

In response to the threat of WF attacks, there have been pro-
posed several defenses against WF attacks on Tor [3, 4, 12,
13, 16, 24]. The WF defenses try to change the pattern of
the traffic in a way that confounds the classifier. The change
in the pattern of the traffic can happen by the link padding
(the packet padding is already implemented in Tor as Tor
cells are padded to 512 bytes). In the link padding strat-
egy, dummy packets are sent to change the pattern. This
type of defense is known to be too expensive in terms of
bandwidth usage and latency. The super-sequence family
defenses [21, 13, 24, 11] cluster the traffic into few sets. All
the traffic traces in the same set are padded to the minimum
sequence that contains all the sequences on that set. Beside
the bandwidth and latency overhead, the problem with these
defenses is that they need a large database of web-page tem-
plates for building the sets. Maintaining this database and
distributing it in the Tor network is very challenging.

For the defenses against WF attacks, we are interested
in the newest defenses that are claimed to be highly effi-
cient and have low overheads in computational, storage, and
bandwidth for the users.

One of the state-of-the art defenses is Website Traffic
Fingerprinting Protection with Adaptive Defense (WTF-
PAD) [10]. WTF-PAD is an updated version of of adap-
tive padding [18]. Adaptive padding works by sending data
packets with padding of a certain distribution and no de-
lay. By doing so, adaptive padding does not incur any la-
tency overhead. However, it does incur a moderate band-
width overhead. WTF-PAD resolves the issue of bandwidth
overhead by applying a better and flexible distribution for
padding strategies to adaptive padding. By doing so, this
defense manages to achieve zero latency overhead and less
than 60% bandwidth overhead.

3

Walkie-Talkie (W-T) is another state-of-the-art defenses
developed by Wang and Goldberg [23]. The major concept
of this defense is communication and burst molding. The
purpose of this defense is to make two websites look exactly
the same to the attacker. Their defense has 31% bandwidth
overhead and 34% latency overhead.

The defense that is implemented on Tor [16] uses HTTP
pipelining. This defense is implemented in response to the
attack developed by Panchenko et al. [15]. The purpose of
this defense is to change the order of the requests when the
number of requests exceeds the depth of the pipeline. This
objective is achieved by randomizing the maximum num-
ber of requests in a pipeline. The bandwidth overhead of
this defense is zero. Recently, Tor has updated this defense
mechanism [16] because of the emergence of newly devel-
oped strong attacks. However, neither versions of Tor’s de-
fense could reduce the attack accuracy of newly developed
attacks [5, 22, 21, 2, 17, 19].

3. Generating Adversarial Traces

3.1. Dataset

Figure 4: A Visualization of Burst of Traffic.

We apply our algorithm to generate adversarial packets
on burst level characteristics as WF attack heavily relies on
burst. Burst is the sequence of packets in a single direc-
tion (see Figure 4). We need to collect the traffic on the
half-duplex communication. Walkie-Talkie (WT) [23] also
works on the half-duplex communication and it finds the su-
persequence in the burst level. Sirinam el al. [19] collected a
big dataset of traffic traces over the half-duplex mode. Their
dataset contains 100 sites, top 100 sites in Alexa.com [1],
with 900 instances for each class. This data collected in
half-duplex mode over Tor network. For our evaluation, we
use their dataset. We cleaned their data and removed the
traces shorter than 50 packets, and the ones that their first
packets are incoming packets. After the cleaning process
we ended up with 83 classes with 720 instances per class.
We break the data into two non-overlapping sets: the At-
tacker Set and the Defender Set. Each set has a monitored
set of 83 classes, each representing a website of interest to
the attacker, with 360 instances each.

Figure 5: Adversarial Traces with Distance Minimization.

3.2. Adversarial Traces with Distance Minimization

Our current mechanism to perturb the traffic is based on
targeted adversarial examples [20]. For a given trace, the
model picks a target trace sample. The idea is to make the
given trace looks like the target trace. To achieve that pur-
pose, the model tries to minimize the distance between these
two traces. Finally, the sample trace moves enough so that
the classifier fails to classify the trace as coming from the
right class.

More concretely, assume that we have a set of sensitive
sites S that we want to protect and a model f(x) (called
detector) that is trained on a set of data from S . We con-
sider traffic trace Is as an instance of source class s ∈ S
that we want to alter such that it is classified to target class
t, t = f(Is) and t 6= s. Is is a sequence of the bursts,
Is =

[
bI0, b

I
1, ..., b

I
n

]
. The only allowed operation on a burst,

bIi , is to add some positive values, δi >= 0, to that burst,
bIi = bIi + δi. The reason for using δi >= 0 is that we
want to increase the volume of the bursts by sending dummy
packets. If δi < 0, it means that we should drop some pack-
ets to reduce the burst volume, but dropping real packets
means losing data.

To protect source sample Is, we pick p random samples
from other classes, PIs =

[
I0T0

, I1T1
,, IpTm

,
]
. PIs is

the target pool for Is. IjTi is the j-th sample in the target
pool and belongs to target class Ti 6= s. We want to pick a
target class and re-cast the source sample to be classified as
that target class. To decrease amount of change to the source
sample, since adding padding adds bandwidth overhead, we
pick the sample from the target pool that is closest to the
source sample (see Figure 5). We define closeness using
the l2 norm distance. Formally:

D(x, y) = l2(x− y)

IT = argmin
It∈PIs

D(Is, It)

Then we modify the source sample to move toward this tar-
get sample.

4

Our goal is to increase the volumes of selected bursts in
the source sample such that the source sample is not clas-
sified as class s and the amount of change is as small as
possible to minimize the bandwidth overhead. To make the
source sample to leave the source class, we move toward
the nearest sample (IT). We define ∆ as the perturbation
vector that we will add to the source sample to generate its
defended form Inews .

∆ = [δ0, δ1, · · · , δn] (∀i ∈ [0, · · · , n] : δi > 0)

Inews = Is + ∆

To find ∆ that minimizes overhead, we should minimize
distance D(Inews , IT). To do this, we compute the gradi-
ent of the distance with respect to the input. The gradient
points in the direction of steepest ascent, which would max-
imize the distance. Therefore, we compute the gradient of
the negative of the distance with respect to the input, and
we move the source sample that direction towards the target
sample. In particular:

∇(−D(I, IT)) = −∂D(I, IT)

∂I
=

[
−∂D(I, IT)

∂bi

]
i∈0,··· ,n

,

where bi is the i-th burst in input I . To modify the source
sample, we change bursts such that their corresponding val-
ues in (−D(I, IT)) are positive. Our perturbation vector ∆
is:

∆ =

{
−α× ∂D(I,IT)

∂bi
−∂D(I,IT)

∂bi
> 0

0 −∂D(I,IT)
∂bi

6 0

where α is paramter that amplifies the output of the gradi-
ent. The choice of α has an impact on the convergence and
the bandwidth overhead. If we pick large value for α, we
will take bigger steps toward the target sample and we will
add more overhead. We modify the source sample by sum-
ming it with ∆, (Inews = Is + ∆). We iterate this process,
computing ∆ for each Is and updating the source sample
until we leave the source class, f(Inews) 6= s or the number
of iterations passes the maximum allowed iterations. In our
initial experiments, we set this maximum as 200 iterations.

Because we only increase the bursts where−∂D(I,IT)
∂bi

>
0, we may run into cases that after some iterations
∇(−D(I, IT)) does not have any positive values or all
the positive values are extremely small such that they do
not make any significant changes to Is. In such cases, if
Inews − Is is smaller than a threshold (we use threshold
0.001) for a few iterations (we use 10 iterations), and we are
still in the source class, we refill the pool with new samples
and pick a new target sample IT to continue the process.

3.3. Adversarial Traces using GAN

The purpose to design a WF defense is to make the distri-
bution of all sites almost the same. We aim to make the data

Figure 6: GAN Architecture.

inseparable so that classifiers fail to classify those websites.
This is the opposite goal of generative adversarial networks
(GAN).

GAN generates samples with many features of the real
samples and the generated samples look like authentic. Two
neural networks Generator and Discriminator work simul-
taneously in a GAN (see Figure 6). The Generator is a
neural network that gets a randomized input drawn from
a latent distribution and outputs the synthesized samples.
The Generator should be trained such that the synthesized
samples look like to be drawn from the data distribution.
The Generator acts like a counterfeiter that generates fake
notes. The Discriminator acts like a police, and its task is
to detect whether its input is a synthesized sample or a real
sample. The Discriminator is a neural network binary clas-
sifier. The Generator’s objective is to increase the error in
the Discriminator by causing misclassification in the Dis-
criminator. The objective of Discriminator is to discrimi-
nate the authentic samples from synthesized ones. Two net-
works compete with each other in Zero-sum game frame-
work to reach the equilibrium point. Afterward, the Gen-
erator learns to map the latent distribution to the data dis-
tribution and generate the synthesized samples which look
authentic.

In designing a WF defense, our goal is to map the data
distribution to a latent distribution. The latent distribution
can be a random noise distribution, or some target distribu-
tion. This is the opposite of the GAN’s goal, GAN is map-
ping the latent distribution to the data distribution. There-
fore, we can flip the latent and data distribution’s position
in GAN to reach our goal. Figure 7 shows the modified
architecture of GAN for designing a WF defense.

As shown in Figure 7, the Generator gets the traffic
traces (burst sequences),X , as the input and generates the
padding (N) that should be added to the burst sequences,
depending on the input traces. The Generator learns to ad-
just the padding to mimic the latent distribution. The Gener-
ator’s objective is to raise the error in the Discriminator and
keep the amount of padding added to the traffic traces as low
as possible to limit the bandwidth overhead. The Discrimi-
nator is responsible to detect whether its input drawn from
the latent distribution or synthesized by the Generator. The
latent distribution can be a normal distribution. This case
is suitable for the un-targeted scenario which the defended
traces are all casted to the normal distribution, their distri-

5

Figure 7: WF GAN Architecture.

butions are not changed to a particular target distribution.
If we want to reshape the data distributions in the websites
to the data distribution of a set of target websites, we can
use the targets’ data distributions as the latent distribution.
Therefore, the Generator learns to change the data distribu-
tion of the sites to the target distribution.

Assuming our noise sample is N labeled as 1, and our
generated adversarial sample is Gx labeled as 0. The dis-
criminator loss is as follows:

Lnoise = CrossEntropy(D(N), 1)

LgeneratedSample = CrossEntropy(D(Gx), 0)

The generator loss is as follows:

Lgenerator = CrossEntropy(D(Gx), 1) + ||X −Gx||2

4. Evaluation
In our evaluation, we break the data into two non-

overlapping sets: the Attacker Set and the Defender Set.
Each set has a monitored set of 83 classes, each represent-
ing a website of interest to the attacker, with 360 instances
each. We examine the bandwidth overhead and reduction
in attacker accuracy of traces protected by our method. We
use traces in the training data and generated their defended
forms by the method described in the previous sections. We
first require a detector (f(x)) to identify when the generated
samples look like a noise. Thus, we define the detector, a
CNN model. In our evaluations we examine two cases:

• Case I: We train on the original traces and test on the
defended traces (adversarial traces). In this case, the
detector has been trained on the attacker set.

• Case II: We train on the generated traces and test on
the generated traces. In this case, the detector has been
trained on the defended samples.

We generated defended samples with various settings.
We varied σ to generate the noise sample. We also varied
different learning rate for the generator and the discrimina-
tor to evaluate their effect on the strength of the defended

Figure 8: Bandwidth Overhead with the variation of σ for
the noise distribution.

traces and the overhead. We measured the detectability
of the defended samples by applying the DF attack [19]
on them. Sirinam el al. [19] suggest using 5,000 packets.
As both Walkie-Talkie and our method increase the size of
the bursts, the number of packets in the traces increases.
We thus use an input size of 10,000 packets, which is the
80th percentile of packet sequence lengths in our defended
traces.

Figure 8 shows the bandwidth overhead in both Walkie-
Talkie (WT) and our method as σ vary. As shown in the fig-
ure, as we vary σ, the bandwidth overhead varies. We also
observe that bandwidth overhead is sensitive to the change
of σ used to generate the noise distribution. The bandwidth
overhead is 9% using σ = 0.15. Using σ = 0.01 and
σ = 0.05, we get 18% and 24% bandwidth overhead, re-
spectively.

Figure 9 depicts the accuracy rate of the DF attack as
σ vary, for input sizes of 5,000 packets. Figure 9a and 9b
depict the results of the evaluations in Case I and Case II,
respectively. For Case I, the accuracies are 67% and 66%
with σ = 0.01 and σ = 0.05. We observe increase of ac-
curacy of Case I with σ = 0.15 which is 76%. For Case
II, σ = 0.15 gives accuracy of 83% which is lower than
σ = 0.01 and σ = 0.05. It is to mention that Case II
is more realistic than Case I because attacker have access
to the defended traffic. And it is obvious that, the attacker
would train his classifier with the defended traces. Accord-
ing to Figure 9a, the lowest accuracy for Case I is 66% when
σ = 0.05, and its corresponding bandwidth overhead is
24%. In addition, the lowest accuracy for Case II is 83%
when σ = 0.15, and its corresponding bandwidth overhead
is 9%.

Our evaluations show that σ = 0.15 provides lower ac-

6

(a) Case I (b) Case II

Figure 9: Accuracy: the accuracy rate of the generated samples against the DF attack in both Case I and Case II.

curacy with lower bandwidth overhead. According to our
results, our best setting is to make noise sample with higher
value of σ. Though our bandwidth overhead is lower than
Walkie-Talkie (WT) defense, the attack accuracy in our ap-
proach is still higher than that of Walkie-Talkie (WT) de-
fense. In addition to that, our earlier approach to generate
adversarial traces using distance minimization gave us 47%
bandwidth overhead and reduced the attack accuracy from
98% t0 60%. In this new approach to generate adversar-
ial traces using GAN, we are able to reduce the bandwidth
overhead from 47% to 9%, but the attack accuracy is higher.

5. Discussion & Future Work
To make a defense effective and realistic, we have to con-

sider the attacker having access to all the resources that a
defender can use. We can see from our results that, when
we train our classifier with the attacker set and test the clas-
sifier effectieness with the defended dataset, the accuracy
seems better. However, when we train our classifier with
the defended traces the accuracy gets higher. In the realistic
setting, the attacker will get the attack accuracy similar to
this. Hence, we plan to investigate further to reduce this
attack accuracy. In website fingerprinting defense work,
there is always a trade-off between the attack accuracy and
the bandwidth overhead. Though we are able to reduce the
bandwidth overhead to 9%, realistically it has no use as the
attacker will get higher attack accuracy. In addition to that,
this new defense approach is not doing better than the ap-
proach with distance minimization. We are also far behind
to reduce the attack accuracy than Walkie-Talkie (WT) de-
fense as well. Hence our future plan is to investigate further
to modify the GAN model. We also plan to generate ad-
versarial packets using CycleGAN. In addition, we plan to
investigate different loss functions proposed in earlier work
in adversarial domain.

6. Conclusion
In this work, we propose a novel defense against WF at-

tacks with lower bandwidth overhead than Walkie-Talkie,
the state-of-the-art defense, with reasonable reductions in
attack accuracy. The defense uses a novel mechanism
that adapts techniques leveraging generative adversarial net-
work (GAN) used to create adversarial examples against
machine learning classifiers, applying them to website traf-
fic traces. The generated adversarial packets can limit
the adversary even though he is trained on the adversarial
traces. To protect a traffic trace, we add fake packets gener-
ated by the generator network to the real traffic trace and try
to make the trace look like noise distribution. Our defense
mechanism results in 9% bandwidth overhead and drops the
accuracy rate of the state-of-the-art WF attack from 98%
to 83%. We emphasize that our tests are conducted in the
closed-world setting, where the attacker knows that the user
is visiting one of the monitored set of websites. In the more
realistic open-world setting, where the user could visit any
site on the Web, 83% accuracy is very likely to lead to many
false positives for the attacker. In future work, we plan to
investigate more to improve the defense and show how to
implement it.

Acknowledgment
We thank National Science Foundation for their gener-

ous grants for this project. This material is based upon work
supported by the National Science Foundation under Grants
Numbers 1423163, 1722743, and 1816851. We also ex-
press our gratitude to Dr. Matthew Wright and Dr. Mohsen
Imani for their support, suggestions, feedback, and recom-
mendations in this work. We also thank Dr. Christopher
Kanan for his feedback in this work.

7

Data & Code

Data and Code will be made public upon the publication
of this paper.

References
[1] Alexa. http://www.alexa.com.
[2] K. Abe and S. Goto. Fingerprinting attack on Tor anonymity

using deep learning. Proceedings of the Asia-Pacific Ad-
vanced Network, 2016.

[3] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A Con-
gestion Sensitive Website Fingerprinting Defense. In Work-
shop on Privacy in the Electronic Society (WPES), 2014.

[4] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Gold-
berg. A Systematic Approach to Developing and Evaluating
Website Fingerprinting Defenses. In ACM Conference on
Computer and Communications Security (CCS), 2014.

[5] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching
from a Distance: Website Fingerprinting Attacks and De-
fenses. In ACM Conference on Computer and Communica-
tions Security (CCS), 2012.

[6] H. Cheng and R. Avnur. Traffic analysis of ssl encrypted web
browsing. 1998.

[7] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In IEEE Symposium on Security and
Privacy (S&P), 2012.

[8] J. Hayes and G. Danezis. k-fingerprinting: A robust scal-
able website fingerprinting technique. In USENIX Security
Symposium, 2016.

[9] D. Herrmann, R. Wendolsky, and H. Federrath. Website Fin-
gerprinting: Attacking Popular Privacy Enhancing Technolo-
gies with the Multinomial Naı̈ve-Bayes Classifier. In ACM
Workshop on Cloud Computing Security. ACM, 2009.

[10] M. Juárez, M. Imani, M. Perry, C. Dı́az, and M. Wright.
Toward an efficient website fingerprinting defense. In Eu-
ropean Symposium on Research in Computer Security (ES-
ORICS), 2016.

[11] L. Lu, E. Chang, and M. Chan. Website Fingerprinting and
Identification Using Ordered Feature Sequences. In Euro-
pean Symposium on Research in Computer Security (ES-
ORICS). Springer, 2010.

[12] X. Luo, P. Zhou, E. Chan, and W. Lee. HTTPOS: Seal-
ing Information Leaks with Browser-side Obfuscation of En-
crypted Flows. In Network & Distributed System Security
Symposium (NDSS), 2011.

[13] R. Nithyanand, X. Cai, and R. Johnson. Glove: A Bespoke
Website Fingerprinting Defense. In Workshop on Privacy in
the Electronic Society (WPES), 2014.

[14] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle. Website fingerprinting at internet
scale. In Network & Distributed System Security Symposium
(NDSS), 2016.

[15] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Web-
site Fingerprinting in Onion Routing Based Anonymization
Networks. In ACM Workshop on Privacy in the Electronic
Society (WPES). ACM, 2011.

[16] M. Perry. Experimental defense for web-
site traffic fingerprinting. 2011. https:
//blog.torproject.org/blog/
experimental-defense-website-traffic\
-fingerprinting.

[17] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and
W. Joosen. Automated website fingerprinting through deep
learning. In Network & Distributed System Security Sympo-
sium (NDSS), 2018.

[18] V. Shmatikov and M.-H. Wang. Timing analysis in low-
latency mix networks: Attacks and defenses. European Sym-
posium on Research in Computer Security (ESORICS), 2006.

[19] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep
fingerprinting: Undermining website fingerprinting defenses
with deep learning, 2018.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In International Conference on Learning Repre-
sentations (ICLR), 2013.

[21] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective Attacks and Provable Defenses for Website
Fingerprinting. In USENIX Security Symposium, 2014.

[22] T. Wang and I. Goldberg. Improved Website Fingerprinting
on Tor. In ACM Workshop on Privacy in the Electronic So-
ciety (WPES). ACM, 2013.

[23] T. Wang and I. Goldberg. Walkie-talkie: An efficient defense
against passive website fingerprinting attacks. In USENIX
Security Symposium, 2017.

[24] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morph-
ing: An efficient defense against statistical traffic analysis. In
Network & Distributed System Security Symposium (NDSS),
2009.

8

http://www.alexa.com.
https://blog.torproject.org/blog/experimental-defense-website-traffic \ -fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic \ -fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic \ -fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic \ -fingerprinting

